Может ли электродвигатель вырабатывать электроэнергию. Генератор своими руками из асинхронного двигателя


Пребывая на даче, часто случается так, что требуется автономный источник электричества для обеспечения света в доме или работы электроинструмента. В этом помогут электрогенераторы, которые можно быстро подключить к дачной электропроводке. Современный рынок предлагает огромный выбор моделей, дающих напряжение от 12 до 380 вольт. Потребитель может выбрать дизель, бензиновый или газовый агрегат. Чтобы узнать, как выбрать генератор для дачи, потребуется вкратце ознакомиться с разными моделями.

Бензиновый генератор нужен на даче для кратковременной подачи электричества. Он прост в эксплуатации, легкий в транспортировке, дешевле аналогов, работающих на другом топливе. Давайте разберемся, как выбрать бензогенератор для дачи из огромного ассортимента моделей.

Время работы

Бытовые бензиновые генераторы рассчитаны на 8 часов беспрерывной работы. После этого им требуется отдых, иначе двигатель перегреется. Продолжительность работы может меняться от потребляемой нагрузки. Если бензиновый генератор загружен до номинала, то часов через 6–7 ему понадобится отдых. Работая на 1 агрегате целые сутки, потребуется контролировать температуру двигателя. Это можно сделать, приложив к корпусу двигателя термопару измерительного прибора – мультиметра.

Вообще, такие модели подходят для энергоснабжения дачного дома в период отключения электроэнергии или для временного подключения электроприборов. Чтобы обеспечить дом электроэнергией на несколько суток, во время перерывов в работе потребуется обязательная замена масла. Но для таких случаев лучше иметь 2 агрегата разной мощности. Их запускают по очереди, используя модель под предполагаемую нагрузку.

В принципе, на даче редко возникает необходимость в круглосуточной работе генератора. Если потребуется подключить кондиционер, и другие маломощные приборы, то загруженность агрегата не будет номинальной. Запускать бензиновый генератор на всю ночь для работы одного холодильника тоже нежелательно. Он будет недогружен или работать на холостом ходу, что негативно скажется на агрегате.

Двигатель

Многие бензиновые генераторы продаются под известными брендами японских и других производителей. Но зачастую такие агрегаты имеют отечественную или китайскую сборку, так как эти производители сами генераторы не производят. Они поставляют только двигатели к ним и другие комплектующие.

Выбирая агрегат для дачи необходимо ознакомиться с его ресурсом:

  • бензиновый агрегат, имеющий двигатель с алюминиевым блоком цилиндров, рассчитан примерно на 500 моточасов;
  • бензиновые двигатели с чугунным цилиндром отличаются большим ресурсом и низким расходом топлива. Здесь нужно обратить внимание на расположение клапанов. Агрегат с боковым расположением клапанов имеет ресурс до 1500 моточасов. Его бензиновый собрат с верхним расположением клапанов имеет ресурс более 3 тыс. моточасов.

В зависимости от мощности, бензиновый агрегат имеет двухцилиндровый или одноцилиндровый двигатель. Из-за того, что современный рынок наполнен некачественным товаром, надо обращать внимание на хитрости, к которым прибегают нечестные производители и продавцы. Дело в том, что одноцилиндровые модели обеспечат мощность до 7 кВт. Если в инструкции написано, что генератор даст большую мощность, это не отвечает действительности. Он ее не даст или просто сломается. Мощность более 7 кВт дадут бензиновые модели с двухцилиндровыми двигателями. Только их стоимость, конечно, намного выше.

Карбюратор

Выбирая бензиновый агрегат, обратите внимание на высоту расположения дачи над уровнем моря. Если земельный участок находится выше 1,5 км, потребуется сделать модернизацию карбюратора. С этим вопросом можно обратиться к дилеру до покупки агрегата, чтобы установили меньшего диаметра жиклер и сделали регулировку. Иначе, обогащенная смесь снизит производительность двигателя, и увеличится расход бензина.

Имейте в виду, что при каждом подъеме генератора с модифицированным карбюратором на высоту 300 м, двигатель будет терять свою мощность примерно на 3,5%. Но и если опустить агрегат в низину, мощность двигателя также снизится, что приведет к перегреву. Для каждой смены высоты потребуется новая перенастройка карбюратора.

Дизель

Если на даче предполагается длительное использование генератора или требуется мощность больше 10 кВт, тогда лучше приобрести дизель. Маленький дизельный агрегат имеет те же возможности, что и бензиновый, только топлива потребляет меньше. Дизель боится длительной работы на холостом ходу или малой нагрузки. При кратковременных включениях дизельный агрегат не даст желаемых результатов в экономии топлива, поэтому не стоит его приобретать для периодической подачи электроэнергии на даче.

Дизельный агрегат сложен в ремонте и требует частого обслуживания. Парафиновые примеси в дизтопливе кристаллизуются на холоде, что делает дизельный генератор затрудненным в пуске. Чтобы завести дизель в мороз понадобятся специальные присадки или зимнее топливо.

Для профилактики дизельный агрегат производители рекомендуют через каждые 100 моточасов загружать 100% нагрузкой примерно на 2 часа работы.

С экономической стороны, газовые агрегаты наиболее выгодны при наличии природного газа. Изначально такие генераторы называли гибридными, потому что они могли работать на газу или бензине. Газовые модели идентичны бензиновым. Их различие только в карбюраторе, приспособленном под газ. Если сравнить дизельный и бензиновый агрегат с газовым, то последняя модель менее популярна из-за мобильности.

Газовые генераторы, работая от баллонов со сжиженным газом, по экономии топлива не отличаются от бензиновых. Реальная экономия примерно в 10 раз получается от использования природного газа из магистрали. Но и здесь есть свои подводные камни. Сжиженный газ из баллонов или газгольдера далек от нормы, поэтому некоторые модели могут вовсе не завестись. От магистрали газовые агрегаты работают хорошо, но для их подключения потребуется проект и вызов газовщиков. К тому же домашний газовый счетчик может не пропустить требуемое количество газа и придется ставить дополнительный, отдельно для генератора. Это создает дополнительные расходы.

Инверторные модели

Выбирая для дачи генератор, многие обращают внимание на инверторные модели. Неважно, на какой вид топлива рассчитан двигатель. Пусть это будет дизель, бензин или газ, главное, что к нему можно подключить компьютер и другую чувствительную электронику. Согласно инструкции, инверторы должны выдавать на выходе стабильные параметры напряжения.

Принцип работы агрегата заключается в преобразовании выпрямителем выработанного переменного тока в постоянный. Для накопления постоянного тока используются аккумуляторы. После стабилизации колебания электроволн, постоянный ток с аккумуляторов инвертором преобразуется в переменный и подается пользователю.

Инверторные модели экономные. Контроль над уровнем масла, топлива и частотой вращения двигателя почти вполовину уменьшают расходы на дозаправку. При минимальной нагрузке автоматика генератора переключает его в режим экономии, продлевая этим срок службы агрегата.

На этом достоинства инверторов заканчиваются. На практике проявляется вторая сторона медали с негативными последствиями. Дешевые инверторные модели не дают на выходе удовлетворительную синусоиду, обещанную в инструкции по эксплуатации. Экономя на качественных комплектующих, производитель пытается снизить стоимость агрегата. Результатом на выходе является подобие синусоиды. К такому генератору электронику подключать нельзя, а могут даже и лампочки перегореть. Но известный бренд и высокая цена тоже не гарантируют качество. При покупке инвертора надо узнать, насколько выходное напряжение близко к требуемой синусоиде.

Главный недостаток инвертора заключается в электронике, которая чувствительна к пусковым токам электрооборудования. Это могут быть насосы, компрессор холодильника и так далее. К примеру, компрессор холодильника мощностью 500 Вт при пуске потребляет 1,5 кВт. Инверторные генераторы маломощные, поэтому как источники электроэнергии для дачи они не подходят. Ведь нет смысла покупать дорогостоящий агрегат для подачи электричества одному компьютеру. Имеются и другие минусы, например, малая емкость встроенной батареи, которую нельзя самостоятельно заменить. Превышение мощности работающего электрооборудования над емкостью аккумулятора приводит к тому, что инверторные агрегаты отключают подачу электроэнергии и переходят на режим зарядки батареи.

Альтернативные источники электроэнергии

К альтернативному источнику электроснабжения дачи можно отнести ветряной генератор и солнечные батареи. Это оборудование для выработки электричества не требует сжигания топлива. Только вместо требуемых 220 вольт ветряной агрегат и солнечные батареи вырабатывают 24 или 12 вольт. Давайте рассмотрим их подробней:


Как вариант, добыть альтернативную электроэнергию все тем же напряжением 24 или 12 вольт можно, используя гидротехнический агрегат. Его устанавливают в протекающую рядом с дачей речку. Принцип его работы тот же, только зимой, когда река замерзнет, электрический ток пропадет.

Делаем выводы

Изучив все модели, делаем выбор генератора для дачи:

  • бензиновые модели лучше брать для кратковременной подачи электроэнергии. Их легко подключить к домашней сети и быстро запустить в работу;
  • дизель нужен для длительной подачи электроэнергии в дом. Хотя дизельный агрегат стоит дороже бензинового, но он выносливее и дешевле в дозаправке;
  • газовые модели для подключения требуют дополнительных расходов и хлопот. Но если возле дачи проходит газовая магистраль, при желании хозяина можно воспользоваться таким генератором;
  • инверторным агрегатам категорически скажем «нет» для использования на даче;
  • альтернативные электрогенераторы – это бесшумный источник электроэнергии, не требующий затрат на топливо. Будь то ветряк или солнечные батареи, они дадут бесплатные 24 или 12 вольт круглый год.

Выбирая автономный источник электроэнергии для дачи, пусть каждый хозяин отдаст предпочтение той модели генератора, которая больше всего ему подходит. Главное, чтобы в дом подавалось качественное напряжение, и была хорошая шумоизоляция от работающего агрегата.

Вконтакте


Увы, но перебои с подачей электричества в некоторые районы могут возникать и сейчас, в XXI веке. Неважно, в чем причина подобных перебоев: хоть обрыв линии из-за плохих условий, хоть плановое отключение.

В любом из случаев потребитель не всегда может безболезненно перенести несколько часов без электричества. Вот тут и приходят на выручку генераторы для дачи и частного сектора вообще.

Автономный генератор для выработки электроэнергии представляется наиболее оптимальным решением не оставаться без электричества и продолжать жить и пользоваться бытовыми приборами на зависть соседям.

Так что купить, а прежде рассмотреть варианты автономных станций – это первоочередная задача.

Какие бывают генераторы

Перед тем, как выбрать генератор для дачи, нужно знать их основные различия. А это, в свою очередь, может влиять на производительность и еще на несколько факторов. На сегодняшний день три самых популярных вида:

  • бензиновый генератор;
  • дизельный генератор;

Уже с названия стает понятно, что отличие состоит в виде топлива, на котором работает автономная установка. Однако не было бы смысла человечеству придумывать несколько типов производителей напряжения и, скорее всего, между этими тремя типами есть определенные различия.

Во-первых, бензин, дизельное топливо и газ – для каждого по-своему доступны. Нет нужды, полагаем, приобретать бензиновый генератор, если к дому подведена газовая магистраль. Ведь стоимость газа по-прежнему остается более приемлемой, чем стоимость газа. С другой стороны, имея в запасе несколько литров бензина или дизельного топлива, можно точно быть уверенным, что одновременное отключение электричества и газа не помешает вашей работе.

Второе, что заслуживает внимания, это работа бытовых генераторов на разных видах топлива. Одни больше производят шума при работе, другие меньше; одни более габаритные, другие более компактны; одни легко заводятся при любой погоде, другие могут иметь проблемы с запуском в морозы.

Выбираем агрегат для частного пользования

Дизель или газовый, а может бензиновый – это довольно важно. Но не менее важно учитывать и другие особенности, по которым нужно производить отбор:


Шум при работе

Бензиновые и дизельные генераторы имеют единственный существенный недостаток – достаточно ощутимый уровень шума в рабочем состоянии. Этот недостаток является в какой-то степени обязательным условием работы. Согласитесь, что бесшумного двигателя вам еще не встречалось.

Аналогичная ситуация наблюдается и здесь: при оборотах двигателя генератора создается определенный шум. Учитывая, что установка обычно работает довольно продолжительное время и монотонный звук раздражает не только хозяев, но и соседей, нужно находить поиск решения данной проблемы.


По правилам пожарной безопасности генератор для загородного дома должен устанавливаться в хорошо проветриваемом помещении. Если соорудить отдельное помещение с приточно-вытяжной вентиляцией, то уровень звука частично уменьшится.

Насколько сильно – зависит от применяемых материалов при строительстве. Однако это потребует дополнительных расходов, сил и времени. Целесообразность данной идеи определяется весом установки. Автономный генератор больших размеров, который не будет переставляться с места на место, скорее всего, потребует такого помещения.

Строительная практика также часто знает случаи, когда для бензинового или дизельного генераторов на участке сооружалась яма с обложенными кирпичом стенами и с крышей. При обеспечении циркуляции воздуха и максимальной при этом герметичности удается достаточно высоко снизить уровень шумов от работающего прибора.

Вместо заключения

То, что генератор способен упростить нашу жизнь – это давно доказанная теорема. Даже, скорее всего, аксиома, которая не требует особых доказательств. Поломки, которые могут случаться в процессе эксплуатации, совершенно не означают, что агрегат недостойный внимания.

Если речь идет о заводском браке, то значит, просто человек доверился некачественному производителю. А если поломка по вине владельца, то зачем винить агрегат? Покупка генератора – полезное приобретение, если уметь им правильно пользоваться.

В электротехнике существует так называемый принцип обратимости: любое устройство, которое преобразует электрическую энергию в механическую, может делать и обратную работу. На нем основан принцип действия электрических генераторов, вращение роторов которых вызывает появление электрического тока в обмотках статора.

Теоретически можно переделать и использовать любой асинхронный двигатель в качестве генератора, но для этого надо, во-первых, понять физический принцип, а во-вторых, создать условия, обеспечивающие это превращение.

Вращающееся магнитное поле – основа схемы генератора из асинхронного двигателя

В электрической машине, изначально создающейся как генератор, существуют две активные обмотки: возбуждения, размещенная на якоре, и статорная, в которой и возникает электрический ток. Принцип её работы основан на эффекте электромагнитной индукции: вращающееся магнитное поле порождает в обмотке, которая находится под его воздействием, электрический ток.

Магнитное поле возникает в обмотке якоря от напряжения, обычно подаваемого с , ну а его вращение обеспечивает любое физическое устройство, хотя бы и ваша личная мускульная сила.

Конструкция электродвигателя с короткозамкнутым ротором (это 90 процентов всех исполнительных электрических машин) не предусматривает возможности подачи питающего напряжения на обмотку якоря. Поэтому, сколько бы вы ни вращали вал двигателя, на его питающих клеммах электрического тока не возникнет.
Тем, кто хочет заняться переделкой в генератор, надо создавать вращающееся магнитное поле самостоятельно.

Создаем предусловия для переделки

Двигатели, работающие от переменного тока, называют асинхронными. Все потому, что вращающееся магнитное поле статора чуть опережает скорость вращения ротора, оно как бы тянет его за собой.

Используя тот же принцип обратимости, приходим к выводу, что для начала генерации электрического тока вращающееся магнитное поле статора должно отставать от ротора или даже быть противоположным по направлению. Создать вращающееся магнитное поле, которое отстает от вращения ротора или противоположно ему, можно двумя способами.

Затормозить его реактивной нагрузкой . Для этого в цепь питания электродвигателя, работающего в обычном режиме (не генерации), надо включить, например, мощную конденсаторную батарею. Она способна накапливать реактивную составляющую электрического тока – магнитную энергию. Этим свойством в последнее время широко пользуются те, кто хочет сэкономить киловатт-часы.

Если быть точным, то фактической экономии электроэнергии не происходит, просто потребитель немного обманывает электросчетчик на законной основе.
Накопленный конденсаторной батареей заряд находится в противофазе с тем, что создается питающим напряжением и «подтормаживает» его. В результате электродвигатель начинает генерировать ток и отдавать его обратно в сеть.

Использование высокомощных моторов в домашних условиях при наличии исключительно однофазной сети требует определенных знаний в том, .

Для одновременного подключения потребителей электроэнергии к трех фазам служит специальное электромеханическое устройство — магнитный пускатель, об особенностях правильной установки которых можно прочитать .

На практике этот эффект применяется в транспорте на электрической тяге. Как только электровоз, трамвай или троллейбус идут под уклон, к цепи питания тягового электродвигателя подключается конденсаторная батарея и происходит отдача электрической энергии в сеть (не верьте тем, кто утверждает, что электротранспорт дорог, он почти на 25 процентов обеспечивает энергией сам себя).

Такой способ получения электрической энергии не есть чистая генерация. Чтобы перевести работу асинхронного двигателя в режим генератора, надо использовать метод самовозбуждения.

Самовозбуждение асинхронного двигателя и переход его в режим генерации может возникнуть из-за наличия в якоре (роторе) остаточного магнитного поля. Оно очень мало, но способно породить ЭДС, заряжающее конденсатор. После возникновения эффекта самовозбуждения конденсаторная батарея подпитывается от произведенного электрического тока и процесс генерации становится непрерывным.

Секреты изготовления генератора из асинхронного двигателя

Чтобы превратить электромотор в генератор надо использовать неполярные конденсаторные батареи. Электролитические конденсаторы для этого не годятся. В трехфазных двигателях конденсаторы включаются «звездой» позволяет начать генерацию на меньших оборотах ротора, но величина напряжения на выходе будет несколько ниже, чем при соединении «треугольником».

Также можно сделать генератор из однофазного асинхронного двигателя. Но для этого годятся лишь те, которые имеют короткозамкнутый ротор, а для запуска используют фазосдвигающий конденсатор. Коллекторные однофазные двигатели для переделки в не годятся.

Рассчитать в бытовых условиях величину потребной емкости конденсаторной батареи не представляется возможным. Поэтому домашний мастер должен исходить из простого соображения: общий вес конденсаторной батареи должен быть равен или немного превышать вес самого электродвигателя.
На практике это приводит к тому, что создать достаточно мощный асинхронный генератор почти невозможно, поскольку чем меньше номинальные обороты двигателя, тем он больше весит.

Оцениваем уровень эффективности — выгодно ли это?

Как видите, заставить электродвигатель генерировать ток можно не только в теоретических измышлениях. Теперь надо разобраться, насколько оправданы усилия по «изменению пола» электрической машины.


Во многих теоретических изданиях главным преимуществом асинхронных представляют их простоту. Честно говоря, это лукавство. Устройство двигателя ничуть не проще устройства синхронного генератора. Конечно, в асинхронном генераторе нет электрической цепи возбуждения, но она заменена на конденсаторную батарею, которая сама по себе является сложным техническим устройством.

Зато конденсаторы не надо обслуживать, а энергию они получают как бы даром – сначала от остаточного магнитного поля ротора, а потом – от вырабатываемого электрического тока. Вот в этом и есть главный, да и практически единственный плюс асинхронных генераторных машин – их можно не обслуживать. Такие источники электрической энергии применяются в , приводимых в действие силой ветра или падающей воды.

Еще одним преимуществом таких электрических машин является то, что генерируемый ими ток почти лишен высших гармоник. Этот эффект называется «клирфактор». Для людей далеких от теории электротехники его можно объяснить так: чем ниже клирфактор, тем меньше тратится электроэнергии на бесполезный нагрев, магнитные поля и прочее электротехническое «безобразие».

У генераторов из трехфазного асинхронного двигателя клирфактор обычно находится в пределах 2%, когда традиционные синхронные машины выдают минимум 15. Однако учет клирфактора в бытовых условиях, когда к сети подключены разные типы электроприборов (стиральные машины имеют большую индуктивную нагрузку), практически невозможен.

Все остальные свойства асинхронных генераторов являются отрицательными. К ним относится, например, практическая невозможность обеспечить номинальную промышленную частоту вырабатываемого тока. Поэтому их почти всегда сопрягают с выпрямительными устройствами и используют для зарядки аккумуляторных батарей.

Кроме того, такие электрические машины очень чувствительны к перепадам нагрузки. Если в традиционных генераторах для возбуждения используется аккумулятор, имеющий большой запас электрической мощности, то конденсаторная батарея сама забирает из вырабатываемого тока часть энергии.

Если нагрузка на самодельный генератор из асинхронного двигателя превышает номинал, то ей не хватит электричества для подзарядки и генерация прекратится. Иногда используют емкостные батареи, объем которых динамически меняется в зависимости от величины нагрузки. Однако при этом полностью теряется преимущество «простоты схемы».

Нестабильность частоты вырабатываемого тока, изменения которой почти всегда носят случайный характер, не поддаются научному объяснению, а потому не могут быть учтены и компенсированы, предопределило малую распространенность асинхронных генераторов в быту и народном хозяйстве.

Функционирование асинхронного двигателя как генератора на видео

Электрические двигатели иногда называют «вторичными», поскольку энергию для них необходимо предварительно выработать при помощи «первичного» двигателя и электрогенератора . Но эти бездымные и практически бесшумные, мощные и долговечные двигатели успели занять первое место среди других.

С начала 19 века известно, что провод с током, помещенный между полюсами магнита начинает двигаться. Если из какого-либо проводника сделать рамку и пустить ток по ее контуру, рамка повернется на 90 градусов. Если же взять много таких рамок и натянуть их на общий барабан, а вокруг поставить мощные магниты – получтися электродвигатель постоянного тока. Барабан называют якорем, а концы рамок – витков – присоединяют к распределительному устройству – коллектору – на валу якоря.

Коллектор – это набор изолированных друг от друга пластин, которые во время вращения вала поочередно касаются двух неподвижных металлических щеток. По щеткам к пластинам коллектора подводится постоянный ток. Он проходит по рамке в тот момент, когда щетки касаются соединенных с нею пластин коллектора. А потом вместе с якорем, коллектор поворачивается, к щеткам подходят две другие пластины, и ток получает следующая рамка.

Электродвигатели постоянного тока могут быстро набирать скорость вращения вала и менять ее по нашему усмотрению. Они легко могут дать задний ход, начав вращаться в противоположном направлении.

Однако большинство электростанций вырабатывают не постоянный, а переменный ток

И поэтому, чтобы питать им электродвигатель постоянного тока, переменный ток предварительно выпрямляют . Существуют и электрические двигатели переменного тока, способные напрямую без выпрямления потреблять ток из сети. В таких двигателях неподвижная часть (корпус) называется статором. На внутренней поверхности статора находится три обмотки, три отдельные катушки с проводами, расположенные под углом 120 градусов друг к другу.

Когда через такую обмотку пропускают электрический ток, она становится электромагнитом. Катушки соединяют так, что переменный ток подается на них не одновременно, а со сдвигом по времени. Магнитное поле каждой катушки то усиливается, то ослабевает, то пропадает совсем. В итоге получается, что магнитное поле бежит по внутренней поверхности статора. Это бегущее, «вращающееся» поле может увлечь за собой проводник, поскольку в первый момент, когда проводник еще неподвижен, вихрь магнитных силовых линий возбуждает в нем электрический ток. Дальнейшее движение полностью подчиняется законам движения проводника с током в магнитном поле.

В качестве подвижной части, называемой ротором, обычно применяют обмотку из провода, или делают «беличье колесо» — клетку в виде цилиндра с параллельными прутьями. Концы прутьев соединяют медными кольцами.

В обмотку статора электродвигателя дают переменный ток, и возникает движущееся магнитное поле. Следом за полем начинает вращаться и ротор, совершая полезную работу.

Но скорость ротора никогда не достигает скорости вращения магнитного поля — он всегда немного отстает, а магнитное поле как бы «скользит» вокруг ротора. Без такого скольжения невозможна работа двигателя, поскольку в роторе не будут индуктироваться токи, необходимые для движения в магнитном поле. Из-за этого явления подобные двигатели называют асинхронными, то есть, неодновременными.

Электрические двигатели не имеют равных по к.п.д. – более 90% подведенной электроэнергии они преобразуют в полезную работу. Однако не стоит забывать и о том, что все-таки электродвигатель является вторичным, и при выработке для него электрической энергии неизбежны иные энергетические потери на первичных двигателях, при передаче энергии и т.п.

Просто о сложном – Электрический двигатель для производства электроэнергии

  • Галерея изображений, картинки, фотографии.
  • Электрический двигатель – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Электрический двигатель.
  • Ссылки на материалы и источники – Электрический двигатель для производства электроэнергии.

Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.


Джоули из турникетов

Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.

Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.

В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.