Панель для солнечной электроэнергии. Принципы работы солнечных батарей и как они устроены


Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

BOB691774 Пользователь FORUMHOUSE

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Вычисляя суммарную потребляемую мощность, следует учитывать не только номинал электроприборов, но и среднесуточное время работы каждого устройства.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

tran13 Пользователь FORUMHOUSE

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Leo2 Пользователь FORUMHOUSE

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Для более точного определения потребностей в электричестве необходимо учитывать не только мощность электроприборов, но и дополнительные потери электроэнергии: естественные потери на сопротивление проводников, а также потери на преобразование энергии в контроллере и инверторе, которые зависят от КПД этих устройств.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Baracud Пользователь FORUMHOUSE

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные , которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Каким бы ни получилось конечное значение рекомендуемой мощности, всегда необходимо иметь ее некоторый запас. Ведь со временем электротехнические характеристики солнечной батареи снижаются (батарея стареет). За 25 лет эксплуатации среднестатистическая потеря мощности солнечных панелей составляет 20%.

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Напряжение и сила тока на выходе из панелей должны соответствовать параметрам контроллера, который будет к ним подключен. Это необходимо предусмотреть на стадии расчета солнечной электростанции.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно . Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

Gaara Пользователь FORUMHOUSE

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

Воцзяо Пользователь FORUMHOUSE

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

Captain Deadly Пользователь FORUMHOUSE

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Jabber Пользователь FORUMHOUSE

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Еще одно преимущества аморфных панелей перед панелями кристаллическими состоит в том, что их элементы можно устанавливать непосредственно в оконные проемы (на месте обычных стекол) или даже использовать их для отделки фасадов.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

Вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном , можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

В 1991 году в Германии, в столице Баварии Мюнхене, открылась выставка INTERSOLAR EUROPE. На этой выставке ведущие производители систем солнечной энергетики представили свои самые новейшие разработки.

По замыслу организаторов этой выставки – компании Freiburg Wirtschaft Touristik und Messe GmbH & Co. KG – эта международная выставка была полностью посвящена использованию в различных сферах солнечных элементов фотовольтаики, а также компонентов солнечного теплоснабжения. Выставка сразу же привлекла внимание специалистов из многих стран мира. Она имела большой успех, поэтому организаторы решили сделать ее традиционной и проводить ежегодно.

На выставку, которая проходит в мае-июне, съезжаются руководители крупнейших компаний-производителей, а также компаний, использующих различные виды изделий солнечной энергетики, приезжают разработчики, инженеры, ученые, работающие в этой области.

Все хотят ознакомиться с новыми идеями, новейшими технологиями в области применения энергии солнца. Специалисты обмениваются опытом, представляют свои последние разработки. В выставочных залах можно увидеть миниатюрные зарядные устройства и самые мощные солнечные батареи, прозрачный телевизор на солнечных батареях и солнечный дом, различные приборы, устройства, машины, работающие исключительно от энергии солнца.

Эта выставка не предназначена для широкой публики, а рассчитана исключительно на профессионалов. На ее площадках проводятся семинары, конференции для специалистов, работающих в областях фотовольтаики, систем хранения энергии, возобновляемых отопительных технологий. Для презентации самых интересных разработок выделяются отдельные павильоны.

На двух последних выставках китайские и южнокорейские производители солнечных модулей представили свои новейшие изделия - панели мощностью более 300 ватт.

Солнечная батарея LG 315 N1C-G4 NeON™2

Уже из самого названия этого солнечного модуля южнокорейской компании LG следует, что заявленная мощность этого модуля составляет 315 ватт. Для компании LG очень важно выйти на рынок альтернативных источников энергии не просто в качестве одного из производителей, а в качестве одного из ведущих производителей систем фотовольтаики.

Поэтому гарантия качества продукции является одним из главных приоритетов компании. Солнечные панели разработаны и производятся с использованием самых передовых технологических процессов.

И фотопреобразователи, из которых составлена эта солнечная батарея, выполнены с наивысшими показателями качества и эффективности.

Ячейки выполнены на базе монокристаллического кремния по специальной двусторонней технологии. Благодаря своим качествам эти ячейки способны пропускать солнечные лучи, которые, отражаясь от специального покрытия тыльной стороны ячейки, способствуют повышению генерации электрического тока. То есть каждая ячейка может вырабатывать электрический ток обеими своими сторонами, повышая тем самым мощность модуля.

Модуль LG 315 N1C-G4 NeON™2. Лицевая сторона

Перед сборкой модуля каждая пластина проходит тщательнейший контроль на предмет строгого соответствия размерам (точность до микрометра) и обнаружения возможных механических повреждений. После проверки отобранные ячейки проходят очередную стадию подготовки. Для минимизации отражения солнечного света ячейки проходят стадию жидкостного травления щелочью. Ячейки с лицевой стороны ламинируются трехслойным покрытием EVA (этиленвинилацетат) и специальной отражающей пленкой с тыльной.


Модуль LG 315 N1C-G4 NeON™2. Тыльная сторона

Затем собранный модуль инкапсулируется для защиты ячеек от проникновения влаги, после чего покрывается трехмиллиметровым антибликовым противоударным стеклом. Рама модуля выполнена из анодированного профильного алюминия. На тыльной стороне устанавливается многофункциональная распределительная коробка с байпасными диодами.


Многофункциональная распределительная коробка

Благодаря такой технологии изготовления модули LG NeON ™ 2 имеют характерный черный цвет, что делает их привлекательными еще и с эстетической точки зрения.


Номинальная мощность 315 ватт.
Эффективность 19.2%

N-типа
Размеры (ДхШхТ) 1640х1000х40 миллиметров
Вес 17. 0 ± 0.5 кг
Тип разъемов МС-4
Класс защиты IP67
Стоимость модуля 30000 рублей

Солнечная батарея BenQ SunForte 333 PM096B00

В 2001 году на Тайване, в городе Синьчжу, произошло объединение двух крупных китайских компаний, работающих в области фотовольтаики. Новое объединение получило название BenQ Solar. Эта объединенная компания сразу заявила о себе, выпустив на мировые рынки высококачественные мощные гелиевые модули.

Солидная научно-исследовательская база и высокотехнологичные производственные мощности позволяют компании постоянно совершенствовать свою продукцию, внедряя самые передовые технологии. Начиная с 2013 года, компания приступила к производству гелиевых модулей по так называемой «обратно-контактной технологии.

Применение этой технологии дало возможность резко повысить мощность солнечных батарей при одновременном уменьшении размеров. Параллельно была увеличена и эффективность изделий.


Солнечная батарея SunForte PM096B00

Модуль SunForte PM096B00 – это на сегодняшний день самый мощный модуль, выпускаемый компанией BenQ Solar. Он выполнен по обратно-контактной технологии, что позволило получить выходную мощность 333 ватта при подтвержденной эффективности 20.4%.

По сравнению с традиционными модулями при равных габаритных размерах эти солнечные батареи производят значительно больше электроэнергии, что дает возможность уменьшить количество модулей и занимаемую ими площадь. Потери мощности составляют 5% за 5 лет, 13% за 25 лет эксплуатации.


Площадь, занимая обычными батареями для домашней электростанции в 4410 ватт


Площадь, занимая батареями SunForte PM096B00 для домашней электростанции в 5940 ватт

Модули сертифицированы по IEC/EN 61215 , IEC/EN 61730 и UL 1703.
Ячейки модуля ламинированы трехслойным покрытием пленки EVA, сам модуль защищен закаленным противоударным стеклом с антибликовым покрытием, толщиной 3.2 миллиметра. На тыльной стороне модуля расположена многофункциональная распределительная коробка с байпасными диодами и соединительными кабелями. Модуль заключен в профиль из анодированного алюминия, покрытого черной краской.

Основные характеристики модуля.
Номинальная мощность 333 ватта.
Эффективность 20.4%
Количество ячеек 96 (8х12) штук
Материал Монокристаллический кремний
Тип ячеек Высокоэффективные с задними проводниками
Размеры (ДхШхТ) 1559х1046х46 миллиметров
Вес 18.6
Тип разъемов ТЕ, совместимые с МС-4
Класс защиты IP67
Стоимость модуля 34000 рублей.

Солнечная батарея NeON™ 2 BiFacial

Настоящей изюминкой Мюнхенской выставки INTERSOLAR EUROPE в 2016 году стала гелиевая панель NeON™ 2 BiFacial южнокорейской компании LG, которая каждый год представляет здесь свои новейшие разработки. И в последние годы эти новинки удостаиваются высших наград выставки. Не стал исключением и 2016 год. Двусторонний гелиевый модуль NeON™ 2 BiFacial заслуженно получил очередную награду.


Гелиевая батарея компании LG NeON™ 2 BiFacial

На сегодняшний день это самый мощный модуль с повышенной эффективностью. Его прозрачные фотоэлементы собирают не только свет, попадающий на его лицевую сторону, но и отраженный, попадающий на тыльную сторону ячеек.


Обычная ячейка LG и ячейка NeON™ 2 BiFacial

Лицевая сторона этой солнечной панели при оптимальных условиях генерирует электрический ток мощностью 310 ватт. Тыльная сторона панели генерирует дополнительно до 30% мощности лицевой панели. Подтвержденная максимальная мощность модуля составляет 400 ватт! Номинальная мощность не менее 375 ватт.

Кроме того, в модуле NeON™ 2 BiFacial используется новейшая технология LG, получившая название Сello Technology™. Эта технология дала возможность перенаправить токопроводящие пути. Пути генерируемого электричества к выходу модуля были распределены на 12 тонких проводников, что позволило снизить потери электроэнергии по сравнению с традиционными схемами.


Новые технологии компании LG

Основные характеристики модуля.
Номинальная мощность 375 ватт.
Максимальная мощность 400 ватт.
Отклонение номинальной мощности 0/+3%
Эффективность 19.6%
Количество ячеек 60 (6х10) штук
Материал Монокристаллический кремний
Тип разъемов МС-4
Класс защиты IP67


Солнечная батарея NeON™ 2 BiFacial на выставке INTERSOLAR EUROPE 2016

С 31 мая по 2 июня 2017 года в Мюнхене будет проходить очередная выставка INTERSOLAR EUROPE. И нет сомнения в том, что на ней появятся очередные новинки и солнечные модули гораздо большей мощности. Наука ведь не стоит на месте.










Как дополнительный и альтернативный источник энергии, солнечные батареи достаточно активно применяются не только в промышленных, но и бытовых условиях. Но прежде чем установить себе такой источник электроэнергии, покупателю важно узнать, как подобрать оптимальные по характеристикам и мощности солнечные батареи для дома, ведь цена готовых комплектов варьируется в достаточно большом диапазоне. Попробуем разобраться как подбирают солнечные батареи для дома, стоимость комплекта, и что в него входит.

Применение солнечных батарей в условиях средней полосы – здесь тоже возможно использование бесплатной энергии

Где чаще всего используются солнечные батареи

Сфера применения солнечных батарей огромна. Уже сейчас их с успехом используют для электроснабжения частных и многоквартирных домов, хозяйств, в том числе для освещения и обогрева теплиц, построек, освещения придомовой территории, питания приборов.

Чаще всего про автономное электроснабжение задумываются в следующих случаях:

    Если местность не электрифицирована, солнечные панели для частного дома обойдутся намного дешевле, чем использование жидкотопливных генераторов.

    В сельской местности нередко отключают электричество, и люди буквально остаются без света. Включив автономное электроснабжение, можно жить в привычном комфорте длительное время, тем более, что в комплекте с солнечными панелями всегда идет аккумулятор.

    В многоквартирных домах солнечные модули также применяются в качестве резервных, а также существуют проекты, предусматривающие использование солнечной энергии для горячего водоснабжения.

Срок службы солнечных батарей

Как правило, в документах на оборудование, указывается срок годности от 20 до 25 или даже 30 лет. Однако многие устройства продолжают функционировать и по прошествии указанного производителями периода. Например, первая в мире солнечная батарея работает уже свыше 60 лет, а за эти годы технология производства была существенно усовершенствована.

Прототип солнечной батареи был разработан еще в конце XIX века

Явно можно выделить только один недостаток – при постоянной эксплуатации мощность оборудования снижается, тем не менее эти показатели незначительны: за 10 лет не больше чем на 10%.

    Предупреждать физические повреждения, такие как падение деревьев, срыв ветром и царапин на чувствительных элементах. От последних зависит эффективность работы устройства.

    Регулярно производить уход: обслуживание и очистку.

    При необходимости установить ветрозаградительные конструкции.

Солнечные панели для частного дома (готовые комплекты) в систему включают следующие составляющие: аккумуляторные батареи и силовая электроника. Срок службы первых устройств составляет от 2 до 15 лет, вторых – от 5 до 20 лет, в зависимости от характеристик, интенсивности эксплуатации и бережного ухода.

Общие характеристики и доступность приобретения

Оборудование не наносит вреда окружающей среде и обеспечивает стабильное питание без скачков напряжения. И, главное, поставляет бесплатную энергию: за которую не приходят коммунальные счета.

Внешний вид солнечных панелей мало изменился, после их изобретения, чего не скажешь о внутренней «начинке»

Солнечная модуль преобразовывает свет в электрическую энергию, генерируя постоянный ток. Площадь панелей может достигать нескольких метров. Когда необходимо увеличить мощность системы, увеличивают количество модулей. Их эффективность зависит от интенсивности солнечного света и угла падения лучей: от местоположения, сезона, климатических условий и времени суток. Чтобы грамотно учитывать все эти нюансы, монтаж должны выполнять профессионалы.

Виды модулей:

    Монокристаллические. Состоят из силиконовых ячеек, преобразующих солнечную энергию. Отличаются компактными размерами. По своей производительности это самая эффективная (эффективность до 22 %) солнечная батарея для дома. Комплект (цена его одна из дорогостоящих) обойдется от 100 тыс. рублей.

    Поликристаллические. В них используется поликристаллический кремний. Они не так эффективны (эффективность до 18%), как монокристаллические фотоэлементы. Зато их стоимость существенно ниже, поэтому они доступны широким слоям населения.

    Аморфные. Имеют тонкопленочные фотоэлементы на основе кремния. Уступают моно и поликристаллам по выработке энергии, но и стоят дешевле. Их преимуществом является способность функционировать при рассеянном и даже слабом освещении.

На нашем сайте Вы можете найти контакты строительных компаний, которые предлагают услугу электротехнических работ . Напрямую пообщаться с представителями можно посетив выставку домов «Малоэтажная Страна».

В систему входят также следующие компоненты:

    Инвертор, который преобразует постоянный ток в переменный.

    Аккумуляторная батарея. Она не только накапливает энергию, но и нивелирует перепады напряжения, когда меняется уровень освещенности.

    Контроллер зарядного напряжения аккумулятора, режима зарядки, температуры и других параметров.

В магазинах можно приобрести как отдельные компоненты, так и целые системы. При этом мощность устройств определяется исходя из конкретных потребностей.

Функционирование, виды преобразователей и их сравнительная энергоэффективность

Преобразователи или инверторы являются ключевыми компонентами солнечных батарей. Они трансформируют постоянный ток, вырабатываемый модулем в переменный напряжением 220 В, который необходим для работы электрических приборов. Инверторы имеют мощность от 250 до 8000 Вт. При покупке рекомендуют учитывать самую высокую нагрузку на сеть и соотносить напряжение и мощность. Оптимальными считаются параметры: 12 вольт и 600 ватт, 24 Вольт при 600-1500 Ватт, 48 Вольт, если мощность больше 1500 Ватт.

Инвертор, на принципиальной схеме работы солнечных батарей

Разновидности преобразователей

    Автономный. Перед тем как выбрать инвертор, надо определить, какие приборы будут от него питаться, и подсчитать их общую максимальную мощность в единицу времени. Рекомендуется взять мощность инвертора несколько больше. Некоторые бытовые электроприборы при включении создают резкое увеличение напряжения, из-за которого устройство может выйти из строя.

    Синхронный. Они накапливают энергию, а излишки передают в электрическую сеть. В случае недостатка электричества, выработанного системой, преобразователь «позаимствует» его из общей сети. Применение модели синхронного типа позволит избежать перебоя в энергоснабжении.

    Многофункциональные устройства объединили в себе преимущества первого и второго вида.

На видео показано, как выбрать инвертор для частного дома:

На общую стоимость солнечных батарей для частного дома влияют и преобразователи. В зависимости от формы сигнала напряжения на выходе существует несколько видов их видов, которые различаются применением и стоимостью:

    С синусоидальным сигналом. Создают ток высокого качества, что сказывается на их стоимости. От них работают крупные бытовые приборы: холодильники, котлы, кондиционеры.

    Прямоугольным. К этим недорогим инверторам подключают осветительные приборы. Большинство домашних бытовых приборов с ними несовместимы.

    Псевдосинусоидальным. Их преимуществом является возможность подключения практически всей домашней техники. Но качество сигнала снижено по сравнению с первым видом, поэтому они стоят дешевле.

Ребристая форма инвертору нужна для максимально эффективного охлаждения

Стоимость комплекта и основные технические характеристики, срок окупаемости

Цены на готовые комплекты в основном варьируются от 30 000 до 2 000 000 руб. Они зависят от составляющих их устройств (от вида батарей, количества приборов, производителя и характеристик). Можно встретить бюджетные варианты стоимостью от 10 500 руб. В эконом-набор входит панель, контроллер заряда, коннектор.

В стандартные комплекты включают:

    энергетический модуль;

    контроллер заряда;

    аккумулятор;

    инвертор;

    стеллаж * ;

    кабель * ;

    клеммы* .

* Предусмотрены в расширенной комплектации.

Стандартный комплект оборудования

Технические характеристики указывают в руководстве к применению:

    Мощность и размеры панелей. Чем больше нужна мощность, тем выгоднее покупать батареи больших размеров.

    Энергоэффективность системы.

    Температурный коэффициент показывает насколько температура влияет на мощность, напряжение и ток.

По подсчетам специалистов, одна солнечная система, рассчитанная на 4 человека, окупается через 4 года. К тому же стоимость за последние 2 десятилетия сильно упала.

Принцип работы солнечной электростанции в домашних условиях

Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

На видео пример расчетов, показывающий, сколько панелей нужно для обеспечения автономного энергоснабжения:

Как солнечная энергия используется для получения тепла

Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

Солнечные коллекторы состоят из:

    бака-аккумулятора;

    насосной станции;

    контроллера;

    трубопроводы;

    фиттингов.

По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

Популярные производители солнечных батарей

Самой распространенной в России является продукция китайских производителей, благодаря относительной дешевизне, по сравнению с продукцией, произведенной в других странах. К примеру, солнечные батареи из Китая почти вдвое ниже по цене, чем немецкие.

Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

    ООО «Хевел» в Новочебоксарске;

    «Телеком-СТВ» в Зеленограде;

    «Sun Shines» (ООО «Автономные Системы Освещения») в Москве;

    ОАО «Рязанский завод металлокерамических приборов»;

    ЗАО «Термотрон-завод» и другие.

По стоимости всегда можно найти подходящий вариант. Например в Москве на солнечные батареи для дома стоимость будет варьироваться от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точке

Этапы монтажа батарей

    Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)

    Устанавливаются панели при помощи специальных крепежных систем.

    Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.

Для эффективного функционирования оборудования и продолжительного срока службы необходимым условием является правильно выполненный монтаж, который под силу только опытным специалистам.

Несмотря на сложность подключения и калибровки, срок работ невелик – при наличии соответствующих инструментов, грамотные монтажники затратят на все про все примерно полдня.

Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасности

Как итог – перспективы развития солнечных технологий

Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной пере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

Обеспечение электропитания в походе, задача комплексная и те, кто думает, что купив только солнечную батарею он решит все свои задачи, скорее всего, ошибётся. В данной статье обсуждается как максимально эффективно использовать солнечную батарею и обеспечить свои гаджеты "правильным" питанием.

Покупая солнечную батарею для питания и зарядки различных устройств в походных условиях, многие считают, что решили все свои проблемы в данной области. Но, как показывает практика, не тут то было - то зарядка не идёт, то мощности не хватает, то ещё какая неожиданность проявится.

Как же "правильно" использовать солнечную батарею, чтобы получить от неё максимум, того, что она может дать? Об этом и поговорим ниже.

Перво-наперво нужно понять, что энергия, получаемая от солнечной батареи - это пока ещё некий полуфабрикат, во многих случаях непригодный для питания многих устройств. Лишь самые "некапризные" из них могут её "переварить", в основном это аккумуляторы, да и то, не всех типов.

Плохое качество энергии заключается, во-первых, в нестабильности выходного тока и напряжения, и, во-вторых, в малом количестве этой энергии, явно меньше тех циферок, что присутствуют в описании солнечных батарей.

Для грамотного использования солнечной батареей необходимо придерживаться двух основных правил:

Солнечная батарея должна как можно больше времени находиться на солнце и работать, работать, работать… отдавать всё, что она может.

Должно быть устройство, которое накапливает всю энергию, что выдает солнечная батарея.

Чаще всего, это либо аккумулятор, либо более сложный накопитель.

Использование этих двух простых принципов позволяет снизить требования к мощности солнечной батареи в несколько раз, и при этом обеспечить гарантированную зарядку своих устройств, даже когда солнца нет.

Теперь подробнее.

Шаг первый. Солнечная батарея.

Для примера, возьмём гибкие . Их мощности вполне достаточно, чтобы обеспечить потребности туриста с набором из КПК, GPS, фотоаппарата, рации (в среднем, конечно, но большинству такой мощности вполне хватает).

Их вид и характеристики показаны ниже.

Солнечная батарея 6 Вт.

Выходное напряжение (рабочее / без нагрузки) - около 6 В / 8В

Выходной ток (рабочий / короткого замыкания) - около 1А / до 1.3А

Габариты в сложенном состоянии - 200х195х9 мм

Габариты в раскрытом состоянии - 595х195х6 мм

Солнечная батарея 8 Вт.

Выходное напряжение (рабочее / без нагрузки) - около 12.5 В / 16В

Выходной ток (рабочий / короткого замыкания) - около 0.66А / до 0.85А

Габариты в сложенном состоянии - 210х350х8 мм

Габариты в раскрытом состоянии - 420х350х6 мм

Материал фотоэлементов - аморфный кремний.

Обе имеют встроенный последовательный диод для предупреждения разряда заряжаемых аккумуляторов.

Что же мы можем подключить напрямую к этим батареям?

Аккумуляторы.

а) Проще всего зарядить от этих солнечных батарей обычные "пальчики", т.е. Ni-Mh или NiCd аккумуляторы.

Ni-Mh аккумуляторы.

От шестиваттной солнечной батареи можно заряжать от 1 шт до 4-х последовательно соединённых аккумуляторов, а от восьмиваттной - 1…8 шт.

Какие "подводные камни" стоит учесть при такой прямой зарядке? В первую очередь, перегрев аккумуляторов в конце зарядки. В большей степени это касается шестиваттной солнечной батареи, т.к. у неё в полтора раза больший выходной ток.

Возможность зарядки NiCd-NiMh аккумуляторов напрямую от солнечной батареи обусловлена тем, что этот тип аккумуляторов допускает пропускание через себя тока даже в полностью заряженном состоянии. Этот ток составляет примерно 1/10 от их ёмкости, т.е. через аккумулятор ёмкостью, например, 2400 мАч можно и после зарядки "прокачивать" ток до 240 мА.

В большинстве случаев, ток, снимаемый с солнечной батареи, много ниже паспортного (который, примерно, соответствует жаркому летнему дню на берегу южного моря), тут и не всегда ясное небо, и неточная ориентация батареи на солнце, да и само солнце может быть не в зените. В результате, ток с солнечной батареи оказывается, зачастую, не слишком превышающим безопасные для аккумуляторов величины, что и позволяет нам заряжать "пальчики" напрямую, без специального зарядника. И необходимость следить за перегревом возникает лишь при ярком солнце.

б) Свинцовые герметичные (гелевые) аккумуляторы на 6 В и 12В также можно заряжать от этих солнечных батарей. Правда, уже не от какой попало, а только от имеющей нужное напряжение, т.е. 6 В аккумулятор только от шестивольтовой шестиваттки, а аккумулятор на 12 В от двенадцативольтовой восьмиваттки.

Свинцовый герметичный аккумулятор.

Эти аккумуляторы после окончания заряда при пропускании через них тока начинают разлагать электролит и постепенно высыхают, поэтому нужен более строгий контроль за их состоянием. Т.е., как минимум, периодически нужно подбегать с тестером и проверять уровень заряда.

в) Литиевые же аккумуляторы заряжать напрямую от солнечной батареи без контроля просто нельзя, т.к. они не допускают перезаряда и просто выходят из строя. При крайней необходимости можно либо заряжать малыми порциями, чтобы заведомо не перезарядить, либо брать с собой в поход мультиметр и при зарядке постоянно контролировать напряжение на аккумуляторе, чтобы оно не превысило 4.2 В / на банку.

Что же можно подключить из электроники к этим солнечным батареям?

Чтобы гарантированно и безопасно заряжалось - практически ничего. Каждый раз нужно проверять эту возможность методом "тыка".

Некоторые рации заряжаются от источника 12 В.

Сотовый телефон, особенно простые модели, можно заряжать от солнечной батареи 6 Вт, от 8 Вт уже нельзя, т.к. у неё на выходе 12 В, которые просто спалят телефон. Но и при зарядке телефона следует учесть, что на ярком солнце батарея даёт слишком большой ток, а сам телефон его ограничивать, в большинстве моделей, не умеет. Большой ток вызывает как преждевременное старение аккумуляторов, так и просто их вспучивание, что уже совсем плохо. Поэтому на ярком солнце при прямой зарядке, следует ставить солнечную батарею под углом к солнцу, чтобы ограничить ток.

КПК и коммуникаторы. 95 % моделей (а может и больше) зарядить напрямую от 6-ти ваттной батареи не получится, а к 8-ми ваттной, как и сотовые, даже подключать нельзя. Невозможность зарядки вызвана, в основном, двумя причинами. Во-первых, недостаточностью тока из солнечной батареи (в основном это касается прожорливых КПК), что приводит падению напряжения на выходе батареи ниже допустимого и схема зарядки КПК прекращает работу, считая, что что-то случилось с источником питания. Во-вторых, даже если тока достаточно, то напряжение с солнечной батареи нестабильно, а многие устройства имеют весьма узкие границы допустимого входного напряжения, например, от 4.8 В до 5.5В. И как только мы выходим за эти пределы зарядка прекращается. Т.е. физически зарядка идти могла бы, но, увы, запрещена разработчиком гаджета.

Шаг второй. Улучшаем солнечную батарею.

Понятно, что такие проблемы реальной зарядки более-менее сложных устройств никого не устраивали. Поэтому самым простым способом исправления ситуации было использование электронных стабилизаторов напряжения на выходе солнечной батареи.

Стабилизатор не позволяет напряжению подняться выше заданного и поэтому исчезает риск спалить своё устройство высоким напряжением.

Первые стабилизаторы были линейными, т.к. просто отсекали лишнее напряжение, не позволяя ему пройти к потребителю. Затем разработчики быстренько сообразили, что грех переводить в тепло и так небольшое количество энергии от солнечной батареи, и начали делать стабилизаторы импульсного типа. Такой стабилизатор просто преобразует напряжение и ток одного уровня в другой с минимальными потерями (КПД около 80…90%), т.е. он может взять 12 В 0.5 А от источника и выдать 6 В, но уже 1 А потребителю (в идеале, без учёта КПД).

Характеристики:

Входное напряжение от 5В до 20В.

Выходное стабилизированное напряжение - от 4 В до 15 В.

Выходной ток имеет два порога ограничения - 0.5 А и 1.5 А

Размеры 62х25х15 мм

Используя подобный стабилизатор, мы можем уже не заботиться о том, какое напряжение будет на выходе солнечной батареи, лишь бы оно было не меньше, чем нужно гаджету.

Кстати, автомобильные адаптеры в прикуриватель, представляют собой такой же импульсный стабилизатор, но с фиксированным выходным напряжением, рассчитанным на конкретное устройство. К сожалению, большинство из них начинает работать лишь от напряжение около 8В, что не позволяет спользовать солнечную батарею на 6 Вт, только 8-ми ваттку.

Т.о. использование стабилизатора позволяет использовать для зарядки КПК, сотовых, плееров или других "капризных" к питанию устройств как солнечную батарею на 6 Вт, так и на 8 Вт.

Шаг третий. "Сытые" гаджеты.

Ну что же, часть задачи по "кормлению" гаджетов мы решили - процесс стал безопасным, и питать их стало возможным от любой солнечной батареи. Но что делать, когда солнце вроде бы и есть, но недостаточно для нормальной зарядки? Т.е. физически мы могли бы зарядить наш КПК пусть и за более долгое время, но, по факту, электроника КПК запрещает нам это делать, т.к. мы не можем обеспечить достаточный, по её "разумению", ток.

Да, конечно, можно купить ещё более мощную батарею, но выход ли это? Дороже, тяжелее таскать, особенно, если на себе, да, и всегда наступит такой момент, когда слабый свет не позволит даже мощной батарее "прокормить" потребителя.

Другим недостатком использования только солнечной батареи со стабилизатором для питания гаджетов, является тот, что в те моменты, когда гаджет частично заряжен, он уже не берёт весь ток от солнечной батареи и этот ток просто теряется.

Более разумный выход заключается в использовании буферного аккумулятора или накопителя. Накопителем будем называть аккумулятор объединённый с электроникой, которая бы следила за его правильным зарядом/разрядом, стабилизировала выходное напряжение, а также выполняла другие функции, облегчающие жизнь пользователю.

Такой накопитель поглощает практически весь ток, который может выработать солнечная батарея.

По аналогии, накопитель - это большое ведро в которое льётся струйка энергии из солнечной батареи. Причём мощность струи может колебаться в десятки раз, неважно - любой поток сгодится для наполнения ведра - всё, что может дать солнечная батарея, всё складируется в аккумуляторы накопителя.

Когда же нужно накормить какой-нибудь гаджет, то он просто подключается к накопителю и черпает из него столько энергии и с такой скоростью, какой ему удобно, и "наевшись" отваливается, а не ждёт, когда же солнечная батарея соизволит нацедить ему нужную порцию.

Графически, различия в зарядке с накопителем и без представлены на рисунке ниже. На графике показан максимальный выходной ток солнечной батареи в течение некоторого времени и периоды, когда может заряжаться гаджет и накопитель.

Область закрашенная красным показывает те моменты времени, когда солнечная батарея вырабатывает достаточно тока, чтобы началась зарядка реального КПК непосредственно от солнечной батареи.

Сумма зелёной и красной областей, соответственно, время, когда происходит зарядка накопителя.

При построении графика, я пытался более-менее соблюдать масштабы реальных токов и их отношений. Так, например, некоторые КПК уже плохо заряжаются при токах ниже 1.2А, особенно, при разряженном аккумуляторе. Здесь, для примера, использован даже меньший ток - 0.5 А. Накопитель же, например, "Вампирчик-Литий", начинает заряжать свои аккумуляторы током от 10 мА, но на графике указно с запасом - 50 мА.

Т.е. мы можем видеть из рисунка, что при использовании солнечной батареи для непосредственной зарядки многих устройств, вся зелёная область просто отбрасывается, т.к. гаджет не может, зачастую, брать слишком маленький ток. Накопитель же съедает почти всё, и "зрелое красное", и "недоросшее зелёное".

Таким образом, получается, что даже, несмотря на то, что при накоплении энергии в промежуточном аккумуляторе и дополнительных преобразований теряется от четверти до половины энергии, полученной от солнечной батареи, мы всё равно оказываемся в выигрыше, причём многократном, по сравнению с непосредственной зарядкой гаджетов от солнечной батареи.

Кроме того, одним из плюсов использования буферного накопителя, является возможность зарядки в удобное нам время, а не только когда есть солнце. Часто гораздо проще и безопаснее зарядить своё устройство вечером в палатке, чем днём на ходу. Тем более, что многие дорогие гаджеты просто так, без присмотра, на долгое время на улице не оставишь.

Накопитель на литиевых аккумуляторах "Вампирчик".

Входное напряжение - от 5 В до 15(20) В.

Выходное стабилизированное напряжение - от 3.5 В...15 В

Выходной ток - до 0.5А или до 1.5А при 5В (выбирается пользователем)

Внутренний Li-Ion аккумулятор - 3.78 В, 2200 мАч 2 шт.

Размеры 135х70х24 мм

Реально, энергии накопленной в "Вампирчике" хватает примерно на 5 зарядок телефона, или на пару-тройку зарядок КПК.

Конечно же, существуют и другие накопители, например, достаточно много их представлено на сайте AcmePower. Но, если "Вампирчик" разрабатывался специально для туристов и позволяет питаться от любой солнечной батареи (5…20 В), то возможность зарядки продукции AcmePower от солнечных батарей нужно выяснять при покупке конкретных моделей. Часть информации, можно найти на сайте производителя гибких солнечных батарей компании SanCharger, где указаны конкретные модели совместимых накопителей и солнечных батарей.

И напоследок, просто приведу два комплекта для обеспечения электропитания в походе, которые мне кажутся наиболее рациональными.

Первый набор оптимизирован по максимальной экономичности использования энергии солнечной батареи:


  1. Солнечная батарея 8 Вт;

  2. Накопительный аккумулятор;

  3. Импульсный стабилизатор напряжения.

Солнечная батарея подключена непосредственно к аккумулятору, что позволяет исключить потери на работу схемы его зарядки. Остаются только потери "в химии", около 15%.

Стабилизатор подключается к контактам аккумулятора и питает нагрузку. Естественно, зарядка и питание потребителей могут выполняться одновременно.

В качестве аккумулятора можно использовать либо свинцовый гелевый на 12В, либо пачку пальчиков АА, в количестве 10 шт. Почему 10-ти, а не 8-ми? В основном, для безопасности. Десять последовательно включенных аккумуляторов имеют напряжение в конце зарядки около 14.5 В, а при таком напряжении 12-ти вольтная солнечная батарея уже не может "протолкнуть" в них большой ток и он резко снижается до безопасного по мере заряда, что позволяет также выполнять дополнительную балансировку аккумуляторов. Т.о., процесс заряда самостоятельно и безопасно прекращается, без необходимости в каких-либо внешних зарядниках.

Недостатком использования такой пачки аккумуляторов является то, что из-за разницы в реальных ёмкостях, аккумуляторы с меньшей ёмкостью будут "изнашиваться" быстрее остальных, особенно, при глубоких разрядах. Поэтому желательно периодически проверять их состояние, измеряя напряжение на каждом аккумуляторе.

Вторым недостатком, впрочем, весьма относительным, такого набора можно считать желательность использования солнечной батареи именно на 12В. Но эти батареи имеют примерно вдвое большие размеры в сложенном виде, чем 6-ти Ваттные.

Основных же достоинств у такого набора три.

  1. Меньшая стоимость электроники по сравнению со вторым вариантом, хотя, с учётом стоимости аккумуляторов, разница уже не будет слишком велика.

  2. Важнее, большой отдаваемый ток на относительно высоких напряжениях. Причём ток можно легко увеличить, используя большее количество стабилизаторов.

  3. Буферный аккумулятор имеет стандартное автомобильное напряжение (9…14 В), поэтому к нему можно без труда подключать любые адаптеры для устройств, работающие от прикуривателя. (Лишь бы они не потребляли ток, больший, чем может отдать аккумулятор)

Второй пункт актуален тем, кто использует видеокамеры, либо некоторые виды спутниковых телефонов, которые питаются от напряжений 8.4 В и более, потребляя при этом ток больше 1 А. Импульсный стабилизатор имеет выходной ток до 1.5А и ему не важно, отдаётся ли этот ток при выходном напряжении 5 В или 10 В (в отличие от "Вампирчика", внутри которого стоит дополнительный ограничитель выходной мощности), поэтому стабилизатор легко справляется с таким током на "высоких" напряжениях.

Кстати, попытка запитать различные зарядники для аккумуляторов (работающие от прикуривателя), например, для NiCd-NiMh пальчиков или литиевых, только от солнечной батареи без буферного аккумулятора, обычно заканчивается неудачей. К сожалению, большинство таких ЗУ потребляют ток импульсами, и, получается, что, хотя средний потребляемый ток вроде бы и небольшой, но во время импульса солнечная батарея с ним не справляется и ЗУ отключается. А буферный аккумулятор сглаживает эти броски тока и зарядка идёт нормально.

Второй набор рассчитан на пользователя с минимальной подготовкой и не желающего работать руками.

  1. Солнечная батарея 6 Вт или 8 Вт;

  2. Накопитель "Вампирчик".

Любая из этих батарей просто подключается напрямую к "Вампирчику", и он сам уже следит за зарядкой. Пользователю остаётся только подключиться к его выходу для питания своих устройств.

Минусы:
  1. Недостаточная для некоторых устройств выходная мощность на "высоких" напряжениях. "Вампирчик" заряжает практически всех потребителей использующих 5 В - это все КПК, сотовые и т.д. Но для видеокамер его выходного тока уже может не хватить.

  2. Бо льшие потери, примерно процентов на двадцать, по сравнению с первой схемой, т.к. присутствуют дополнительные преобразования.

  3. Использование автоадаптеров на его выходе возможно, но не слишком логично, т.к. получается слишком много преобразований и, следовательно, потерь.

Плюсы:

  • Простота и компактность, минимум проводов.

  • Не нужно контролировать аккумуляторы.

Выводы.

Как видно из обзора, использование "голой" солнечной батареи заставляет завышать её мощность и при этом зарядка гаджетов в реальных условиях эксплуатации всё равно не гарантируется.

Использование электроники не просто желательно, а, во многих случаях, обязательное условие безопасной зарядки сложных потребителей. Да и вообще, самой возможности такой зарядки.

Буферный аккумулятор (накопитель) позволяет снизить требования к мощности солнечной батареи в несколько раз. А также обеспечивает дополнительные удобства в эксплуатации.



Солнечные батареи для частного дома – отличное решение целого ряда энергетических потребностей на этих жилых объектах в глазах их владельца. Если Вы проживаете в климатической зоне с внушительным количеством солнечных дней в году (а весенне-осенний период в Московской области вхож в число таковых), то создание автономных систем энергоснабжения для загородного дома сезонного проживания или дачи способно решить массу задач при меньших затратах, чем подведение коммуникаций централизованного энергоснабжения.

Преобразующие энергию Солнца в электрическую солнечные батареи в наших широтах можно встретить где угодно – на крышах дач и частных домов, на теплицах и нежилых объектах различного назначения. Это обстоятельство говорит ровно о том, что все большее количество наших соотечественников подходят к вопросу расходования собственных средств на энергоносители рационально и вдумчиво.

Ведь какой бы доступной по цене для жителей столичного региона не была электрическая энергия, ее получение непосредственно от солнца является вообще бесплатной и не зависит от различных организаций и третьих лиц.

Для этого и служат те или иные модели солнечных батарей - модульное оборудование, использующее фотоэлектрический эффект для преобразования энергии инсоляризации в электрическую.

Солнечные батареи для частного дома: иметь или не иметь?

Многие домовладельцы скептически относятся к этому оборудованию и категорически отмахиваются от возможности рассмотрения его покупки. Их скепсис основан на недостаточном знании или устаревших представлениях о солнечных батареях, их мощностях и стоимости.

И наша задача – исправить эти заблуждения потенциальных владельцев автономных электростанций на основе солнечных модулей. Правильно подобранные солнечные батареи для дома и дополнительное оборудование, необходимого для передачи и накопления полученной энергии, способны легко закрыть все актуальные потребности домочадцев в эксплуатации электроприборов.

К примеру, от весны до осени в Московской области солнца достаточно для ежедневной зарядки солнечной электростанции в 5 кВт.

Такая способна обеспечить питание экономичного холодильника, насоса, энергосберегающих ламп, LCD телевизора и ряда других электроприборов.

При большей же мощности инвертора системы Вам не придется отказывать себе в привычном комфорте, который обеспечивает подключение к централизованной системе электроснабжения.

Виды солнечных батарей: подбираем правильно

Современная индустрия автономных энергетических систем предлагает широчайший выбор фотоэлектрических преобразователей различной мощности, размеров и технологий. Чтобы не ошибиться при подборе конкретной модели солнечных батарей для частного дома или дачи, необходимо представлять себе их характеристики, разновидности и варианты возможной установки на объекте.

Поэтому давайте рассмотрим различные виды солнечных батарей и факторы, на которые необходимо обращать внимание при их выборе в первую очередь.

Итак, представленные на российском рынке фотоэлектрические модули по фактору используемых в них фотоэлементов подразделяются на:

  • Монокристаллические солнечные батареи (КПД варьируется в пределах 15-20%). За счет большей эффективности трансформации энергии в сравнении с другими видами, панели монокристаллического типа при заданной величине нагрузки требуют меньшей площади для своего размещения. С ростом срока эксплуатации такие конструкции незначительно теряют свои первоначальные свойства;
  • Поликристаллические солнечные батареи (КПД в пределах 12-15%). Меньшая эффективность модулей этого типа, образованных последовательным соединением прямоугольных фотоэлементов, требует приблизительно на четверть больше площади для их установки в сравнении с монокристаллическими;
  • Панели на основе аморфного кремния (КПД порядка 7%). Наиболее дешевые солнечные батареи, отличающиеся высокой гибкостью и хорошим поглощением рассеянного света. Но в электроснабжении частных домов и дач используются крайне редко ввиду небольшого срока службы.
  • Микроморфные панели (КПД 8-12%), отличающиеся долгим сроком службы, но также требующие значительного покрытия ими открытых освещаемых площадей.

Технология фотоэлектрических преобразователей напрямую связана с площадью панелей и местом их размещения. Эти факторы в глазах многих играют существенную роль, так как в большинстве случаев устанавливают солнечные батареи на крышу дома , хозпостройки либо на участке в сторону юга как направления наиболее интенсивной инсоляции. И далеко не каждый домовладелец готов облицевать кровлю своего жилья таким необычным видом покрытия. В то же время, не каждый обладает и достаточным земельным участком, часть которого можно было бы выделить под размещение солнечных панелей.

Выбирая конкретную модель солнечной батареи , необходимо также ориентироваться на номинальную мощность, характеризующую возможность оборудования по выработке электрической энергии для групп потребителей.

Каталог внешних солнечных батарей

Если Вам нужны эффективные, но при этом недорогие солнечные батареи для частного дома в Москве, к Вашим услугам каталог магазина «As-Solar» . Мы не только предлагаем поставку оборудования и всех комплектующих для создания на базе солнечных панелей автономных систем электроснабжения загородных домов и дач, но и весь спектр работ по их монтажу и настройке «под ключ».

Перед тем, как приобрести солнечные батареи для дачи или для дома, мы также настоятельно рекомендуем проконсультироваться у наших специалистов. Это позволит обеспечить оптимальный подбор оборудования, его слаженную и четкую работу с остальными компонентами системы автономного электроснабжения дома, а также впоследствии облегчить ее монтаж и обслуживание.